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abstract

The coverage of the physical phenomena 
experienced in compressible flow is somehow 
difficult to understand. However, here we 
provide a brief explanation of the assumptions 
used in the analysis of compressible flows. 
A strong foundation for more advanced and 
focused study and understanding of what 
causes compressible flows to differ from 
incompressible flows and how they can be 
analyzed is vital to resolve realistic problems 
in aerodynamics. Compressibility issues arise 
when fluids are moving at velocities higher than 
the speed of sound which is the equivalent of 
Mach number 0.3. It is vital to understand 
the behavior of the fluid beyond this number 
because compressibility factors affect the fluid 
and it would be necessary to account for such 
factors in order to get results closer to the real 
solution.
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resumen

La cobertura de los fenómenos físicos experi-
mentados en el flujo compresible es algo difícil 
de entender. Sin embargo, aquí damos una ex-
plicación breve acerca de las hipótesis empleadas 
en el análisis de flujo compresible. Una base só-
lida para un estudio más avanzado y enfocado, y 
la comprensión de las causas de flujo compresi-
ble para diferenciar de los flujos incompresibles 
y la forma en que se pueden analizar es vital para 
resolver problemas reales en aerodinámica. Los 
asuntos de comprensibilidad aparecen cuando 
los fluidos se están moviendo con una veloci-
dad mayor que la velocidad del sonido la cual 
es equivalente al valor del número Mach 0.3. 
Es importante entender el comportamiento 
del fluido por encima de este valor de número 
Mach porque los factores de comprensibilidad 
afectan al fluido y se necesitaría tomar en cuenta 
tales factores para conseguir resultados cercanos 
a la solución real.

Palabras clave: compresible, flujo, incompre-
sible, aerodinámica, número Mach, velocidad, 
sonido
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Introduction

High speed flows are frequently encoun-
tered in engineering applications. Flow 
features such as shock waves in nozzles or 
supersonic wind tunnels, expansion waves, 
and oblique or bow shock waves in front of 
rapidly moving objects are all examples of in-
triguing phenomena that occur due to high 
speeds and compressibility of fluids. Com-
pressible fluid flow theory is intended to co-
ver compressible behavior of fluids. Here, we 
provide a brief introduction to compressible 
flows, including fundamentals of isentropic 
compressibility and isothermal compressibi-
lity. This phenomenon takes place in certain 
regions of speed of the flow such as high 
subsonic, transonic, sonic, supersonic and 
hypersonic velocities. 

However, normal shocks, oblique and ex-
pansion shocks may appear in these pheno-
mena contributing to the complexity of the 
solution. Properties of the flow may change 
dramatically right after the shocks affecting 
the whole solution of the fluid flow in this 
area and the  surrounding 

Discussion

Compressible flow is routinely defined 
as variable density flow; this is in contrast 
to incompressible flow, where the density 
is assumed to be constant throughout. Ob-
viously, in real life every flow of every fluid is 
compressible to some greater or lesser extent; 
hence, a truly constant density (incompres-
sible) flow is a myth. However, as previously 
mentioned, for almost all liquid flows as well 
as for the flows of some gases under certain 
conditions, the density changes are so small 
that the assumption of constant density can 
be made with reasonable accuracy. In such 
cases, Bernoulli’s equation 1, defined by An-
derson, Jr. (1989) can be applied with con-
fidence. 

However, the simple definition of com-
pressible flow as one in which the density is 
variable requires more elaboration. Consider 
a small element of fluid of volume “v” as 
shown in Figure 1. The pressure exerted on 
the sides of the element by the neighboring 
fluid is p.

      

Figure 1.  Small element of fluid of volume v

Assume the pressure is now increased by 
an infinitesimal amount dp. The volume of 
the element will be correspondingly com-
pressed by the amount dv. Since the volu-
me is reduced, dv is a negative quantity. The 
compressibility of the fluid, Ʈ, is defined by 
Anderson, Jr. (2003) as

Physically, the compressibility is the frac-
tional change in volume of the fluid element 
per unit change in pressure. However, equa-
tion 2 is not sufficiently precise. We know 
from experience that when a gas is compres-
sed, its temperature tends to increase, de-
pending on the amount of heat transferred 
into or out of the gas through the bounda-
ries of the system. Therefore, if the tempe-
rature of the fluid element is held constant 
(due to some heat transfer mechanism), then 
the isothermal compressibility is defined by 
Anderson, Jr. (2003) as
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(2)

transferred into or out of the gas through the boundaries of the system. Therefore, if the temperature

of the fluid element is held constant (due to some heat transfer mechanism), then the isothermal 

compressibility is defined by Anderson, Jr. (2003) as

𝜏𝜏𝜏𝜏𝑇𝑇𝑇𝑇 = −1
𝑣𝑣𝑣𝑣

(𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

)𝑇𝑇𝑇𝑇 (3)

On the other hand, if no heat is added to or taken away from the fluid element (if the compression 

is adiabatic), and if no other dissipative transport mechanisms such as viscosity and diffusion are 

important (if the compression is reversible), then the compression of the fluid element takes place 

isentropically as described by Shapiro (1953), and the isentropic compressibility is defined by 

Anderson, Jr. (2003) as

𝜏𝜏𝜏𝜏𝑠𝑠𝑠𝑠 = −1
𝑣𝑣𝑣𝑣

(𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

)𝑠𝑠𝑠𝑠 (4)

where the subscript s denotes that the partial derivative is taken at constant entropy.

Compressibility is a property of the fluid. Liquids have very low values of compressibility (ƮT for

water is 5x10 -10 m2/ N at 1 atm) whereas gases have high compressibility (ƮT for air is 10 -5 m2/ N 
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In terms of density, equation 2 becomes
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a change in pressure, dp, the corresponding 
change in density will be dρ, where from 
equation 6

To this point, we have considered just the 
fluid itself, with compressibility being a pro-
perty of the fluid. Now assume that the fluid 
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ffman (1976), such flows are initiated and 
maintained by forces on the fluid, usually 
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7 demonstrates that the resulting change in density will be small for liquids (which have low values 

of Ʈ), and large for gases (which have high values of Ʈ). Therefore, for the flow of liquids, 
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ges in the pressure. In particular, we shall see 
that high-speed flows generally involve lar-
ge pressure gradients. For a given change in 
pressure, dp, due to the flow, equation 7 de-
monstrates that the resulting change in den-
sity will be small for liquids (which have low 
values of Ʈ), and large for gases (which have 
high values of Ʈ). Therefore, for the flow of 
liquids, relatively large pressure gradients can 
create high velocities without much change 
in density. Hence, such flows are usually 
assumed to be incompressible, where ρ is 
constant. On the other hand, for the flow 
of gases with their attendant large values of 
Ʈ, moderate to strong pressure gradients 
lead to substantial changes in the density via 
equation 7. At the same time, such pressure 
gradients create large velocity changes in the 
gas. Such flows are defined as compressible 
flows, where ρ is a variable.

If the velocity of gases is less than 0.3 than 
the speed of sound (M<0.3), the associated 
pressure changes are small, and even though 
Ʈ is large for gases, dp in equation 7 may still 
be small enough to dictate a small dρ. For 
this reason, the low-speed flow of gases can 
be assumed to be incompressible as shown in 
Figure 2. This is velocities less than 250 mi/h 
(112 m/s). On the other hand, for flow velo-
cities higher than 0.3 of the speed of sound 
(M>0.3), the associated pressure changes, dp 
are relatively large, and having a large value 
of Ʈ for gases, large changes in density, dρ 
are produced via equation 7

Figure 2. Compressibility Range of 0.3 M
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Conclusion

In summary, a compressible flow is con-
sidered as one where the change in pressure, 
dp, over a characteristic length of the flow, 
multiplied by the compressibility via equa-
tion 7, results in a fractional change in den-

sity, dρ/ρ, which is too large to be ignored. 
For most practical problems, if the density 
changes by 5% or more, the flow is conside-
red to be compressible.
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