159
Predicting Student Performance
in Programming Course.
International Journal of Computer
Applications, 70(17).
Gray, G., McGuinness, C., & Owende,
P. (2014). An application of
classication models to predict
learner progression in tertiary
education. In Advance Computing
Conference (IACC), 2014 IEEE
International(pp. 549-554). IEEE.
Han, J., Kamber, M., & Pei, J. (2012).
Data Mining: Concepts and
Techniques, Elsevier.
Honken, N. B., & Ralston, P. A.
(2013). High-Achieving High
School Students and Not So
High-Achieving College Students
A Look at Lack of Self-Control,
Academic Ability, and Performance
in College. Journal of Advanced
Academics, 24(2), 108-124.
Lantz, B. (2013). Machine learning with
R. Packt Publishing Ltd.
Li, Q., Swaminathan, H. and Tang,
J. (2009), Development of
a Classication System for
Engineering Student Characteristics
Aecting College Enrollment and
Retention. Journal of Engineering
Education, 98: 361–376. doi:
10.1002/j.2168-9830.2009.
tb01033.x
Li, K. F., Rusk, D., & Song, F. (2013).
Predicting student academic
performance. In Complex,
Intelligent, and Software Intensive
Systems (CISIS), 2013 Seventh
International Conference on (pp. 27-
33). IEEE.
López
Bonilla, J. M., López Bonilla,
L. M., Serra, F., & Ribeiro, C.
(2015). Relación entre actitudes
hacia la actividad física y el
deporte y rendimiento académico
de los estudiantes universitarios
españoles y portugueses. Revista
iberoamericana de psicología del
ejercicio y el deporte, 10(2), 275-284.
Mishra T., Kumar D. & Gupta S.
(2014) Mining Students’ Data
for Prediction Performance
Fourth International Conference
on Advanced Computing &
Communication Technologies,
Rohtak, pp. 255-262.
Ramesh, V., Parkavi, P., & Ramar,
K. (2013). Predicting student
performance: a statistical and data
mining approach. International
journal of computer
applications,63(8).
Rodríguez, Á. P. A., & Arenas, D. A. M.
(2016). Programas de intervención
para Estudiantes Universitarios
con bajo rendimiento académico.
Informes Psicológicos, 16(1), 13-34.
Romero, C., Ventura, S., Pechenizkiy,
M., & Baker, R. S. (Eds.). (2011).
Handbook of educational data
mining. CRC Press.
Romero, C., & Ventura, S. (2013).
Data mining in education. Wiley
Interdisciplinary Reviews: Data
Mining and Knowledge Discovery,
3(1), 12-27.
| C | V. XXIII | N. 26 | - | 2018 |
P