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La forma correcta de utilizar la 
ecuación de Bernoulli

rEsumEn

La ecuación de Bernoulli es un caso determinado de un problema 
del flujo de fluido. Se deben cumplir algunas restricciones para 
aplicar correctamente esta ecuación en particular. El flujo del 
fluido debe considerarse no viscoso, incompresible, estable e 
irrotacional. Sin embargo, si el flujo del fluido es rotacional, la 
ecuación de Bernoulli aún puede aplicarse siempre y cuando los 
puntos de interés estén en la misma línea de corriente del flujo. 
Aquí, nos enfocaremos en demostrar que, en el caso de un flujo 
de fluido rotacional, los puntos de interés deben encontrarse 
en la misma línea de corriente del flujo y por esta razón, sí se 
podría continuar con el uso de la ecuación de Bernoulli. El 
principio solo es aplicable a los flujos isentrópicos: cuando los 
efectos de los procesos irreversibles (e.g. turbulencia, fricción) y 
los procesos no adiabáticos (e.g. la radiación de calor, difusión 
de masa) son pequeños y pueden despreciarse.

Palabras  clave:  flujo, Bernoulli, viscoso, incompresible, 
estable, irrotacional, línea de corriente, isentrópico, irreversible, 
turbulencia, fricción

aBstraCt

Bernoulli’s equation is a certain case of a fluid flow problem. 
Some restrictions must be met in order to correctly apply this 
particular equation. The fluid flow must be considered inviscid, 
incompressible, steady and irrotational. However, if the fluid 
flow is rotational, Bernoulli`s equation can still be applicable 
as long as the points of interest are on the same streamline 
of the fluid flow. Here, we will focus on demonstrate that, 
in the case of a rotational fluid flow, the points of interest 
must be on the same streamline and because of that, it can 
be proceeding with the usage of Bernoulli`s equation. The 
principle is only applicable for isentropic fluid flows: when the 
effects of irreversible processes (e.g. turbulence, friction) and 
non-adiabatic processes (e.g. heat radiation, mass diffusion) are 
small and can be neglected.
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Inroduction

Various forms of Bernoulli’s equation 
can be modeled because of the existence of 
various types of fluid flow, and therefore 
Bernoulli’s principle can be applied 
too. Bernoulli’s principle states that, 
an increase in the speed of a fluid flow 
occurs simultaneously with a decrease in 
internal pressure. The principle is named 
after Daniel Bernoulli published it in his 
book Hydrodynamic in 1738. Although, 
Bernoulli deduced that pressure decreases 
when the flow speed increases, it was 
Leonhard Euler who derived Bernoulli’s 
equation in its usual form in 1752. All 
in all, there is a correct way of using 
Bernoulli`s equation with confidence and 
which is briefly described to continuation.

The law that explained the 
phenomenon from the energy 
conservation point of view was found 
in his Hydrodynamic work. Later, Euler 
deduced an equation for an inviscid 
flow (assuming that viscosity was 
insignificant) from which Bernoulli’s 
equation arises naturally when 
considering a stationary case subjected 
to a conservative gravitational field.

Discussion

To arrive at Bernoulli`s equation, 
certain assumptions had to be made 
which limit us the level of applicability. 
According to Euler equation Eq. 1, 
defined by Anderson, Jr. (1989), it gives 
the variation of pressure with respect to 
speed variation, ignoring shear forces 
(inviscid fluid flow) and body forces 
(weight of the air fluid particle is ignored). 
Only pressure forces were considered.

                                                                                                                           (1)

Integrating Eq. (1) by using a 
limit integration and considering an 
incompressible fluid flow (change in 
density is very small because of low 
speed), will give us Bernoulli`s equation 
applicable to points 1 and 2 which are on 
the same streamline. However, if the flow 
is uniform throughout the field, then 
the constant in Eq. (2) is the same for 
all streamlines as defined by Anderson, 
Jr. (1989). 

                                    = const along
             streamline                                        

(2)

The assumptions that were made 
during the derivation of this equation 
led us to some restrictions that must be 
implemented in order to use Bernoulli`s 
equation. But, first of all, we must verify 
if the flow field in question is possible 
to exist. This is done by verifying if 
continuity equation is fulfilled.

1. Continuity Equation in its vector 
form

 
 The continuity equation states that, 

“the net outflow of mass through 
the surface surrounding the volume 
must be equal to the decrease of mass 
within the volume” (Bertin and Smith 
1998, p. 24). This is, when a fluid is 
in motion, it must move in such a way 
that mass is conserved as it is stated 
in Eq. 3 defined by Bertin and Smith 
(1998):

                                                  

    (3)
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equation applicable to points 1 and 2 which are on the same streamline. However, if 

the flow is uniform throughout the field, then the constant in Eq. (2) is the same for all 

streamlines as defined by Anderson, Jr. (1989).  

                                                      ∫𝑃𝑃1
𝑃𝑃2𝑑𝑑𝑑𝑑 = −𝜌𝜌∫𝑉𝑉1

𝑉𝑉2𝑉𝑉𝑑𝑑𝑉𝑉           

                                                  𝑃𝑃2 − 𝑃𝑃1 =
−1
2 𝜌𝜌(𝑉𝑉22 − 𝑉𝑉12)  

                       𝑃𝑃1 +
1
2 𝜌𝜌𝑉𝑉1

2 = 𝑃𝑃2 +
1
2 𝜌𝜌𝑉𝑉2

2  = const along streamline                                        (2) 

The assumptions that were made during the derivation of this equation led us to some 

restrictions that must be implemented in order to use Bernoulli`s equation. But, first of 

all, we must verify if the flow field in question is possible to exist. This is done by 

verifying if Continuity Equation is fulfilled. 

1. Continuity Equation in its Vector Form 

The continuity equation states that, “the net outflow of mass through the surface 

surrounding the volume must be equal to the decrease of mass within the volume” 

(Bertin and Smith 1998, p. 24). This is, when a fluid is in motion, it must move in 

such a way that mass is conserved as it is stated in Eq. 3 defined by Bertin and 

Smith (1998). 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜵𝜵(𝜌𝜌𝑽𝑽

→
) = 0                                                      (3) 

 

    Where ρ is the fluid density, t is the time, 𝑽𝑽
→

 is the flow velocity vector field. 
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    Where     is the fluid density, t is the 
time,  is the flow velocity vector field.

2. Steady flow 

 To see further how mass conservation 
places restrictions on the velocity field, 
consider a steady fluid flow. That is, for 
a relatively low speed flow, the pressure 
variations are sufficiently small, and 
because of this, the density change is 
also small that can be assumed to be 
constant and so, the density of the 
fluid flow does not vary with time.

                                                                      
3. Incompressible
 
 Since density change is very small for 

low velocity airflows, it can be assumed 
to be constant. One way to proof this, 
is by verifying if we are dealing with 
low velocity airflows. As a rule of 
thumb, if its mach number is lower 
than 0,3 or has a velocity less than 300 
ft/s or 100 m/s (or approximately 200 
mph), then the velocity airflow can 
be assumed to be small and treated as 
incompressible Anderson, (1989) and 
Anderson (2003):

                                                              
Where:
V is the flow velocity 
a is the Speed of Sound
T is the temperature of the flow field 

γ is the ratio of the specific heats at 
constant pressure and volume respectively   
and has a value of γ = 1.4 for dry air.
R is the air constant for ideal gas and has 
a value of:  
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                                                                 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0      

3. Incompressible 

Since density change is very small for low velocity airflows, it can be assumed to 

be constant (𝜌𝜌 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). One way to proof this, is by verifying if we are dealing with 

low velocity airflows. As a rule of thumb, if its Mach Number is lower than 0,3 or has 

a velocity less than 300 ft/s or 100m/s (or approximately 200 mph), then the velocity 

airflow can be assumed to be small and treated as incompressible Anderson, 

(1989) and Anderson (2003). 

                                                           𝑀𝑀 = 𝑉𝑉
𝑎𝑎 = 𝑉𝑉

√𝛾𝛾𝛾𝛾𝛾𝛾    
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    V is the flow velocity  

    a is the Speed of Sound 

    T is the temperature of the flow field  

γ is the ratio of the specific heats at constant pressure and volume respectively   and 

has a value of γ = 1.4 for dry air. 
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R is the air constant for ideal gas and has a value of  𝑅𝑅 = 1716 𝑓𝑓𝑓𝑓.𝑙𝑙𝑙𝑙
𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠.𝑅𝑅     𝑜𝑜𝑜𝑜    𝑅𝑅 =

287 𝑁𝑁.𝑊𝑊
𝐾𝐾𝑠𝑠.𝐾𝐾 

    Then, so far, the continuity equation reduces to: 

𝛻𝛻. 𝑽𝑽
→

= 0    or: 

                      𝜕𝜕𝑠𝑠
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0                                                     (4) 

4. Remember that shear forces (friction) and body forces (gravity) were ignored 

to get Eq. (1). But in the case where conservative body forces are considered like 

gravity, Bernoulli`s equation would include an extra term ρgh as shown in Eq. (5). 

In many applications of Bernoulli`s equation, the change in the term ρgh (change in 

potential energy) along the streamline flow is so small in comparison to the other 

terms that it can be ignored. For example, in the case of an aircraft in flight, the 

change in height “h” along a streamline flow is so small that the term ρgh can be 

disregarded.    

 

                                             1
2 𝜌𝜌𝑉𝑉2 + 𝑃𝑃 + 𝜌𝜌𝜌𝜌ℎ = 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐                                                 

(5) 

               1
2 𝜌𝜌𝑉𝑉2 + 𝑃𝑃 = 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 = Ptotal 

   where 

   Static pressure = P 

   Dynamic pressure =  1
2 𝜌𝜌𝑉𝑉2 

Total Pressure = Ptotal 
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La forma correcta de utilizar la ecuación de Bernoulli
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Eq. (13) shows that the given flow 
velocity field satisfy the continuity 
equation. Second, we need to find out if 
the given flow velocity field is rotational 
or irrotational. 

Evaluating the partial derivatives of 
equations (8) and (9) yield equations 
(14) and (15) respectively.

(14)
                                                            

(15)

Substituting equations (14) and (15) 
into Eq. (7) yields:

It is clear that, the given velocity flow 
field is rotational. So, that means that we 
can still use Bernoulli`s eq. only if the two 
given points are on the same streamline. 
So, we need to identify the streamline by 
using the 2D streamline Eq. (16) defined 
by Bertin and Smith (1998):

(16)

Solving this equation for the given 
velocity components shown in equations 
(8) and (9) one finds that

       

and

Since this equation is a point function, 
then
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5. Inviscid Flow: The product of viscosity times shear velocity gradient defines the 

term shear stress, 𝜏𝜏. We must understand that, there are no real fluids for which 

viscosity is zero. But, there are many real cases where this product is sufficiently 

small that, the shear stress term, can be ignored when compared to other terms in 

the governing equations as described by Bertin and Smith (1998). 

6. Irrotational flow. If the 2D flow contains no singularities, then the Vorticity Vector 

�⃗⃗⃗�𝝎   in Eq. (6) for irrotational flow must be zero as defined by Bertin and Smith (1998). 

                        �⃗⃗⃗�𝝎    =  𝜵𝜵 × 𝑽𝑽
→

= (𝒊𝒊 𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝒋𝒋 𝜕𝜕

𝜕𝜕𝜕𝜕) × (𝒊𝒊𝑢𝑢 + 𝒋𝒋𝑣𝑣) = 𝟎𝟎                                        
(6)    

  

𝜵𝜵 × 𝑽𝑽
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= (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕
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or 

 

                                                        ω =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜕𝜕
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If ω = 0 (irrotational flow), then the constant in Eq. (2) is real in all the fluid flow. But if 

ω≠0 (rotational flow), then, this constant is only real along a streamline. Here, we 

present an example of the correct way of using Bernoulli`s equation.  

Let`s consider a 2D velocity flow field at sea level (𝜌𝜌 = 1.225 𝐾𝐾𝐾𝐾
𝑓𝑓𝑓𝑓3) and defined by: 

𝑢𝑢 = 𝑥𝑥2 − 𝑥𝑥𝑥𝑥                                                   (8) 

𝑣𝑣 = 𝜕𝜕2

2 − 2𝑥𝑥𝑥𝑥                                                               (9) 

Where “u” and “v” are defined in m/s.  
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First, we need to identify if continuity equation is satisfied, or in other words, if the 

velocity flow field is possible to exist.   

     Continuity equation in a 2D form is: 

            𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 0                                                               (10) 

    Then,                                              𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 2𝑥𝑥 − 𝑦𝑦                                                               

(11) 

    and                 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑦𝑦 − 2𝑥𝑥                                                                

(12) 

    Substituting equations (11) and (12) into Eq. (10) yields: 

                2𝑥𝑥 − 𝑦𝑦 + 𝑦𝑦 − 2𝑥𝑥 = 0                                                     

(13) 

    Eq. (13) shows that the given flow velocity field satisfy the continuity equation. 

    Second, we need to find out if the given flow velocity field is rotational or irrotational.  

    Evaluating the partial derivatives of equations (8) and (9) yield equations (14) and 

(15)  

    respectively. 

      ω = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕                                                         

    𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −2𝑦𝑦                                                     (14) 

    𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝑥𝑥                                                        (15) 
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    Substituting equations (14) and (15) into Eq. (7) yields: 

ω = −2𝑦𝑦 − (−𝑥𝑥) = 𝑥𝑥 − 2𝑦𝑦 ≠ 0 

It is clear that, the given velocity flow field is rotational (ω ≠ 0). So, that means that 

we can still use Bernoulli`s eq. only if the two given points are on the same streamline. 

So, we need to identify the streamline by using the 2D streamline Eq. (16) defined by 

Bertin and Smith (1998): 

 

                                                       𝑑𝑑𝑑𝑑
𝑢𝑢 = 𝑑𝑑𝑑𝑑

𝑣𝑣                                                        (16) 

  Solving this equation for the given velocity components shown in equations (8) and 

(9) one finds that 

𝑑𝑑𝑥𝑥
𝑥𝑥2 − 𝑥𝑥𝑦𝑦 = 𝑑𝑑𝑦𝑦

𝑦𝑦2

2 − 2𝑥𝑥𝑦𝑦
 

       and 

(𝑦𝑦2

2 − 2𝑥𝑥𝑦𝑦 )𝑑𝑑𝑥𝑥 − (𝑥𝑥2 − 𝑥𝑥𝑦𝑦) 𝑑𝑑𝑦𝑦 = 0 

     Since this equation is a point function, then 

𝑑𝑑𝑑𝑑 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 𝑑𝑑𝑥𝑥 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦 𝑑𝑑𝑦𝑦 = 0 

     where                                         𝜕𝜕𝐹𝐹
𝜕𝜕𝑑𝑑 = 𝑣𝑣 = 𝑑𝑑2

2 − 2𝑥𝑥𝑦𝑦                                                        
(17) 
 
 
     and 9 
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we can still use Bernoulli`s eq. only if the two given points are on the same streamline. 

So, we need to identify the streamline by using the 2D streamline Eq. (16) defined by 

Bertin and Smith (1998): 

 

                                                       𝑑𝑑𝑑𝑑
𝑢𝑢 = 𝑑𝑑𝑑𝑑
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       and 

(𝑦𝑦2

2 − 2𝑥𝑥𝑦𝑦 )𝑑𝑑𝑥𝑥 − (𝑥𝑥2 − 𝑥𝑥𝑦𝑦) 𝑑𝑑𝑦𝑦 = 0 
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𝜕𝜕𝑦𝑦 𝑑𝑑𝑦𝑦 = 0 

     where                                         𝜕𝜕𝐹𝐹
𝜕𝜕𝑑𝑑 = 𝑣𝑣 = 𝑑𝑑2

2 − 2𝑥𝑥𝑦𝑦                                                        
(17) 
 
 
     and 
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5. Inviscid Flow: The product of viscosity times shear velocity gradient defines the 

term shear stress, 𝜏𝜏. We must understand that, there are no real fluids for which 

viscosity is zero. But, there are many real cases where this product is sufficiently 

small that, the shear stress term, can be ignored when compared to other terms in 

the governing equations as described by Bertin and Smith (1998). 

6. Irrotational flow. If the 2D flow contains no singularities, then the Vorticity Vector 

�⃗⃗⃗�𝝎   in Eq. (6) for irrotational flow must be zero as defined by Bertin and Smith (1998). 

                        �⃗⃗⃗�𝝎    =  𝜵𝜵 × 𝑽𝑽
→

= (𝒊𝒊 𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝒋𝒋 𝜕𝜕

𝜕𝜕𝜕𝜕) × (𝒊𝒊𝑢𝑢 + 𝒋𝒋𝑣𝑣) = 𝟎𝟎                                        
(6)    

  

𝜵𝜵 × 𝑽𝑽
→

= (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)𝑘𝑘 = 0 

 

or 

 

                                                        ω =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 0                                                       
(7)                                  

 

 

If ω = 0 (irrotational flow), then the constant in Eq. (2) is real in all the fluid flow. But if 

ω≠0 (rotational flow), then, this constant is only real along a streamline. Here, we 

present an example of the correct way of using Bernoulli`s equation.  

Let`s consider a 2D velocity flow field at sea level (𝜌𝜌 = 1.225 𝐾𝐾𝐾𝐾
𝑓𝑓𝑓𝑓3) and defined by: 

𝑢𝑢 = 𝑥𝑥2 − 𝑥𝑥𝑥𝑥                                                   (8) 

𝑣𝑣 = 𝜕𝜕2

2 − 2𝑥𝑥𝑥𝑥                                                               (9) 

Where “u” and “v” are defined in m/s.  

6. Irrotational flow. 

 If the 2D flow contains no singularities, 
then the Vorticity Vector   in Eq. (6) 
for irrotational flow must be zero as 
defined by Bertin and Smith (1998).

                  
(6)   

 

or

(7)                                 

If ω = 0 (irrotational flow), then the 
constant in Eq. (2) is real in all the 
fluid flow. But if ω≠0 (rotational flow), 
then, this constant is only real along a 
streamline. Here, we present an example 
of the correct way of using Bernoulli`s 
equation. 

Let`me consider a 2D velocity flow 
field at sea level                              and 
defined by:                                                   

(8)
                                                               

(9)

Where “   ” and “  ” are defined in m/s. 
First, we need to identify if continuity 

equation is satisfied, or in other words, if 
the velocity flow field is possible to exist.  

Continuity equation in a 2D form is:                                                                           

(10)

Then,                                           (11)

and                                              (12)
  

Substituting equations (11) and (12) 
into Eq. (10), yields:

(13)
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     where                                                                                                

(17)

     and
                                                        

(18)

Integrating Eq. (17) with respect to 
“x” yields

   
 (19)

Where            is the respective stream 
function

Then, taking the derivate of Eq. (19) 
with respect to “y” yields

                                                           (20)

Replacing Eq. (20) into Eq. (18) yields

Therefore;                        and the 
streamline is:

                                                                         
(21)

Now, if we intend to use Bernoulli`s 
equation, for example to find the static 
pressure difference between two points 
in the flow, we must be sure to have 
these two points on the same streamline. 
Consider these two points to be: (-1, 2) 
and (2, 2). The coordinates of these two 
points are defined in meters.

For point one (-1, 2), Eq. (21) results 
in -4.

For point two (2, 2), Eq. (21) also 
results in -4

Then, these two points are on the same 
streamline, so we can use Bernoulli`s 
equation only between these two points 
even though the flow is rotational. Now, 
using Eq. (8) and (9)

                                                      
                                           

For point one (-1, 2)

    

For point two (2, 2)

(negative sign means opposite direction)

Using Bernoulli`s Eq. (2):

 

The static pressure difference between  
and which are located on the same 
streamline in the fluid flow is Pa.
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    Substituting equations (14) and (15) into Eq. (7) yields: 

ω = −2𝑦𝑦 − (−𝑥𝑥) = 𝑥𝑥 − 2𝑦𝑦 ≠ 0 

It is clear that, the given velocity flow field is rotational (ω ≠ 0). So, that means that 

we can still use Bernoulli`s eq. only if the two given points are on the same streamline. 

So, we need to identify the streamline by using the 2D streamline Eq. (16) defined by 

Bertin and Smith (1998): 

 

                                                       𝑑𝑑𝑑𝑑
𝑢𝑢 = 𝑑𝑑𝑑𝑑

𝑣𝑣                                                        (16) 

  Solving this equation for the given velocity components shown in equations (8) and 

(9) one finds that 

𝑑𝑑𝑥𝑥
𝑥𝑥2 − 𝑥𝑥𝑦𝑦 = 𝑑𝑑𝑦𝑦

𝑦𝑦2

2 − 2𝑥𝑥𝑦𝑦
 

       and 

(𝑦𝑦2

2 − 2𝑥𝑥𝑦𝑦 )𝑑𝑑𝑥𝑥 − (𝑥𝑥2 − 𝑥𝑥𝑦𝑦) 𝑑𝑑𝑦𝑦 = 0 

     Since this equation is a point function, then 

𝑑𝑑𝑑𝑑 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 𝑑𝑑𝑥𝑥 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦 𝑑𝑑𝑦𝑦 = 0 

     where                                         𝜕𝜕𝐹𝐹
𝜕𝜕𝑑𝑑 = 𝑣𝑣 = 𝑑𝑑2

2 − 2𝑥𝑥𝑦𝑦                                                        
(17) 
 
 
     and 
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        𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = −𝑢𝑢 = −(𝑥𝑥2 − 𝑥𝑥𝑥𝑥)                                                (18) 
 
 
     Integrating Eq. (17) with respect to “x” yields 
    
 
 
𝜑𝜑 = 𝐹𝐹 = 𝜕𝜕2

2 𝑥𝑥 − 𝑥𝑥2𝑥𝑥 + 𝑓𝑓(𝜕𝜕)                                       (19) 
 
     Where 𝜑𝜑 = 𝐹𝐹 is the respective stream function 
 
 
 
     Then, taking the derivate of Eq. (19) with respect to “y”   yields 
 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥2 + 𝑓𝑓′(𝜕𝜕)                                                           (20) 
 
 
    Replacing Eq. (20) into Eq. (18) yields 
 

−𝑥𝑥2 + 𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥2 + 𝑓𝑓′(𝜕𝜕) 
 

𝑓𝑓′(𝜕𝜕) = 0 
    Therefore 
 

𝑓𝑓(𝜕𝜕) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
    And the streamline is: 
 
                                   𝜑𝜑 = 𝜕𝜕2

2 𝑥𝑥 − 𝑥𝑥2𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0                                      
(21) 
 

Now, if we intend to use Bernoulli`s eq, for example to find the static pressure 

difference between two points in the flow, we must be sure to have these two points 

on the same streamline. 

Consider these two points to be: (-1, 2) and (2, 2). The coordinates of these two points 

are defined in meters. 

For point one (-1, 2), Eq. (21) results in -4. 
 

(2)2
2 (−1) − (−1)2(2) = −4 
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For point two (2, 2), Eq. (21) also results in -4 
 
 

(2)2

2 (2) − (2)2(2) = −4 
 
 

Then, these two points are on the same streamline, so we can use Bernoulli`s equation 

only between these two points even though the flow is rotational. Now, using Eq. (8) 

and (9) 

 
 
                                                     𝑢𝑢 = 𝑥𝑥2 − 𝑥𝑥𝑥𝑥                                             
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𝑃𝑃1 + 1
2 ∗ 1.225 ∗ 5.412 = 𝑃𝑃2 + 1

2 ∗ 1.225 ∗ 62 

𝑃𝑃1 − 𝑃𝑃2 = 4.123 𝑃𝑃𝑃𝑃 

The static pressure difference between 𝑃𝑃1 and 𝑃𝑃2 which are located on the same 

streamline in the fluid flow is 4.123 Pa. 

 
CONCLUSION 

 

Throughout this paper, the correct way of using Bernoulli`s equation has been shown. 

Initially, it has been presented some assumptions for which this equation is valid to 

apply. These assumptions led to a set of restrictions that must be met in order to apply 

correctly this equation. However, during the process of the application of Bernoulli`s 

equation, the analyst has to be sure which restrictions apply for the particular case. 

According to this, the results must be presented in a similar way as it was done in this 

paper like the pressure difference between the two points on the same streamline. 
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Conclusion

Throughout this paper, the correct way 
of using Bernoulli`s equation has been 
shown. Initially, it has been presented 
some assumptions for which this equation 
is valid to apply. These assumptions led 
to a set of restrictions that must be met 
in order to apply correctly this equation. 

However, during the process of the 
application of Bernoulli`s equation, the 
analyst has to be sure which restrictions 
apply for the particular case. According 
to this, the results must be presented in 
a similar way as it was done in this paper 
like the pressure difference between the 
two points on the same streamline.
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